

Powder Basics

Brought to you by:

Metal Powder Works, GranuTools & TBGA John Barnes, Filip Francqui & Kirk Rogers GRANU TOOLS[™]

WE MAKE METAL POWDERS WORK

metalpowderworks.com

The objective of this workshop is to introduce several powder concepts and principles as well as measurement methods to describe how powders behave.

Reference: Metal AM: "Understanding Metal Powder Requirements for Additive Manufacturing: Views From the Industry"

Barnes, DeHoff & Francqui

https://www.metal-am.com/wp-content/uploads/sites/4/2019/10/Metal-AM-Autumn-2019-sp-1.pdf

Outline

- Individual powder characteristics influence the powder population
 - Size
 - Shape
 - Satellites
 - Electrostatic characteristics
 - Materials Science (diffusion, oxidation, hydroaffinity)
- Powder Populations, i.e. "Powder" can be made of sub populations which dictate bulk performance
 - The overall Powder Size Distribution matters, as can the d10, d50 and d90 What's that?
 - Presence of fines or particles < 20um
 - Bulk density can I get to 45% dense?
 - Denudation moves that highly flowing powder
- What influences how powder moves and packs and how do we measure it?
 - Small and irregular require more energy than large and round
 - Hall Flow circular orifice with 30 degree walls okay when you want to move through a circle w/30 deg walls
 - Recoater blades have more to do with angle of repose and avalanche
 - Packing influenced by natural packing initially, we don't really get "tapped" density in AM

A Closer Look at Powder

- Most metal powder is water atomized
- Almost all AM powder is gas/plasma atomized
- Polymer powders are mostly round
- Focusing on metal powders
- Sphericity is a continuum and not a yes or no

Water Atomized Irregular

Gas Atomized Spherical

Plasma Atomized Spherical

Size Matters! And Shape...and Combinations

Powder Size Distribution

Fig. 3 The effect of alloy on powder production efficiency or PSD [2]

Alloy	D10	D50	D90
1	17	28	41
2	22	39	70
3	31	40.5	53

Hall Flow 1 % fines 100

© Metal Powder Works metalpowderworks.com 5

AM from the Powder Point of View

Processing Dictates Powder Requirement

Powder shipped in appropriate container

Gravity fed hopper, either circular or rectangular orifice

What Measurement Applies?

Dosing Wheel

EDEM and The Barnes Global Advisors collaborated to simulate the dosing wheel effect using powder characteristics. This visualization shows the principle of how a dosing wheel distributes powder.

PLAY 🜔

Recoater Blade

Properly dosed.

Recoater Blade

Too much powder is applied and **not** properly dosed.

Influences of the Laser/Binder

P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, A. J. Moore, Acta Materialia 142 (2018) 107-120

Fig. 9 The effect of binder ejection on highly flowing, spherical powder [9]

John Barnes john.barnes@metalpowderworks.com

> Filip Francqui filip.francqui@granutools.com

Kirk Rogers kirk@barnesglobaladvisors.com

WE MAKE METAL POWDERS WORK

metalpowderworks.com